EE 504 Software Defined Radio

LEARN BY DOING

NV

&/

CAL POLY

Instructor: Professor Dunton

Jacquline Radding and Ben Duval

Spring 2024




ELECTRICAL ENGINEERING DEPARTMENT
California Polytechnic State University
San Luis Obispo

EE 504 Experiment #1

Transmit and Receive
Objective Learn how to operate and understand the Pluto radio.

Equipment: MATLAB, Pluto Radio, USB cable, antennas, loopback cable

Background:

RF Transceiver LO Tuning Range Bandwidth
AD9363 (factory default) 325 - 3800 MHz 20 MHz
AD9364 70 - 6000 MHz 56 MHz

Figure 1: Choose the 20MHz RF transceiver chip (AD9363) using the configurePlutoRadio

Procedure:

1. Connect the loopback SMA cable to the tx port and the rx port of your pluto.

2. Take a picture of your physical setup.

3. Run the example script and save the final state of the spectrum analyzer plot as a figure.
4. Modify the example script to transmit your chirp signal. Run the procedure again.
5. Replace the loopback cable with the antennas and run the procedure again.

6. Remove the antennas and run the procedure again.



Results:

MJ Spectrum Analyzer - O X

ANALYZER ESTIMATION MEASUREMENTS SPECTRUM SPECTRAL MASK ~ CHANNEL MEASUREMENTS

0
Frequency (MHZz)

Processing VBW = 5.00000 MHz RBW =9.76562 kHz Sample Rate = 10.0000 MHz Updates = 18203 T = 2.79600

Figure 2: Bunny ears set up sine wave with fs/2

The antennas may have picked up noise from other FM signals.



Mﬂ Spectrum Analyzer - O X

ANALYZER ESTIMATION MEASUREMENTS SPECTRUM SPECTRAL MASK ~ CHANNEL MEASUREMENTS

100

-1 0
Frequency (MHz)

Stopped VBW = 5.00000 MHz RBW = 9.76562 kHz Sample Rate = 10.0000 MHz Updates = 26041 T = 4.00000

Figure 3: SMP loopback set up using sine wave. fs/2

Harmonics in figure 3 may be seen in the frequency space. The third harmonic
is usually the most impactful on the signal. Harmonics may be seen in the
figure above. The clock is 4MHz so the interference is most likely not the
clock.



]_|_|1|_| Spectrum Analyzer - O X

ANALYZER ESTIMATION MEASUREMENTS SPECTRUM SPECTRAL MASK CHANNEL MEASUREMENTS

0
Frequency (MHz)
Processing VBW = 5.00000 MHz RBW = 9.76562 kHz Sample Rate = 10.0000 MHz Updates = 16328 T = 2.5080C

Figure 4: No antennas or SMP loopback with fs/2



ih_m] Spectrum Analyzer - O X

ANALYZER ESTIMATION MEASUREMENTS SPECTRUM SPECTRAL MASK ~ CHANNEL MEASUREMENTS

100

-2 0
Frequency (MHz)

Stopped VBW = 10.0000 MHz RBW =19.5312 kHz Sample Rate = 20.0000 MHz Updates = 26041 T = 2.00000

Figure 5: SMP loopback with fs



i|_,_m| Spectrum Analyzer - O X

ANALYZER ESTIMATION MEASUREMENTS SPECTRUM SPECTRAL MASK ~ CHANNEL MEASUREMENTS

100

-2 0
Frequency (MHz)

Processing VBW = 10.0000 MHz RBW = 19.5312 kHz Sample Rate = 20.0000 MHz Updates = 12343 T = 0.948000

Figure 6: Bunny ears with fs



m Spectrum Analyzer — O X

ANALYZER ESTIMATION MEASUREMENTS SPECTRUM SPECTRAL MASK ~ CHANNEL MEASUREMENTS

0
Frequency (MHz)
Processing VBW = 10.0000 MHz RBW =19.5312 kHz Sample Rate = 20.0000 MHz Updates = 8671 T = 0.666000

Figure 7: Nothing with fs



0
Frequency (MHz)

Stopped VBW = 10.0000 MHz RBW = 19.5312 kHz Sample Rate = 20.0000 MHz Updates = 26041 T =2.00000

Figure 8: Bunny ears with chirp signal



Amplitude

0.8

0.6

0.4

0.2

.2

0.4

-0.6

Transmitted Signal

e

A “| LA

0.5 1 15 2 25 3 35 4 45 5
Time (s) w104

Figure 9: Chirp signal Transmission

10



11

0
Frequency (MHz)

Stopped VBW = 10,0000 MHz RBW = 19.5312 kHz Sample Rate = 20.0000 MHz Updates = 26041 T =2.00000

Figure 10: SMP loopback Chirp signal

Frequency {(MHz)

Stopped VBW = 10.0000 MHz RBW = 19.5312 kHz Sample Rate = 20.0000 MHz Updates = 26041 T = 2.00000

Figure 11: Nothing with chirp signal



12

Questions:

1. The noise floor is defined as the sum of measured noise power. What happens to the
noise floor when switching from the loopback cable to the open ports.

- Looking at Figure 5, the noise floor seems relatively stable when using the SMA
loopback cable. However, upon changing to leaving the ports open, in Figure 7,
we can actually see the noise floor increase across all frequencies. This is
indicative of noise being picked up from the surroundings.

2. A spur is an undesirable signal that may be generated at the receiver or from some
interfering source. Do you notice any spurs in the loopback spectrum? Which
frequencies if so?

- There are a few spurs in the loopback spectrum, in Figure 3, at 3 and 5 MHz.
These may be harmonics, interference, or reflections.

3. The signal-to-noise ratio (SNR) is defined as the ratio of signal power to the noise
power. Estimate the peak signal power and average noise power from each spectrum.
Which system seems to have the best SNR?

- SNR = peak amplitude / rms noise, SNR = S - N for decibel

- Nothing from fig 11: SNR = 60dBm - (-8 dBm) = 68 dBm

- Loopback from fig 10 SNR =75- (-20) = 95 dBm

- Antenna from fig 8 75-(-10) = 85 dBm

- The loopback has the best dBm. This makes sense due to less susceptibility to
noise interference due to a direct closed loop.

4. The bandwidth of a signal describes the range of frequencies present. What is the
bandwidth of your chirp signal?

- The bandwidth is 0.4 MHz according to graphs 10 and 11.

5. How would the received signal spectrum change if we transmitted a single tone signal
instead of a chirp signal?

- A signal tone would be an impulse-like function at a certain frequency in the
frequency space.

6. Is the radio, as used in the experiment, operating in simplex, half duplex, or full
duplex?



13

- The radio is full duplex since it sends and receives simultaneously.

Conclusion:

It is important to understand what loopback, disconnected, and antenna signals look like when
troubleshooting. Some interference could be seen in the antenna signal due to other
transmissions such as radio. The loopback may have reflections or harmonics as interference.
Overall, the introduction to the Pluto radio improved communication understanding.

ELECTRICAL ENGINEERING DEPARTMENT
California Polytechnic State University
San Luis Obispo

EE 504 Experiment #2

FM Radio
Objective Learn how to operate and understand the FM radio.

Equipment: MATLAB, Pluto Radio, USB cable, SMA Antenna

Results:

Measuring out the quarter wavelength of 91.3 MHz, ~82 cm would serve as a functional
antenna. M4 = c/ 4 x f. A copper wire was cut and soldered onto an SMA connection that went
to the PLUTO radio. A ground wire was not used.



14

ANALYZER ESTIMATION MEASUREMENTS SPECTRUM SPECTRAL MASK ~ CHANNEL MEASUREMENTS

20

ik
L S TR T
L ru 1 ""I'";I:}“?,I‘.‘_“

]
Frequency (kHz)

Running VBW = 787.485 mHz RBW = 44.5313 Hz Sample Rate = 45.6000 kHz Updates = 61072 T = 1371.44

Figure 2-1: Using the oscilloscope, the FM signal after the ZOH

ADRLM-PLUTO
2 - Fr
Receivar = ‘]))

Broadcast

{0

Figure 2-2: The Simulink FM broadcast setup.



15

Questions:

1. How did the audio fidelity compare between the kit antenna and the A/4 monopole?

The kit antenna had poor audio quality and some distortion. The monopole was clear. This was
due to the fact that the kit was the wavelength divided by a large number, it was not at the
resonant frequency.

2. Why do we need a ZOH block between the demodulated signal and the spectrum analyzer?

We need a ZOH block so the signal is consistent going to the oscilloscope. The ZOH is also
used to reconstruct the signal so it can be read.

3. What did you notice about the two baseband spectra?
The two baseband spectra have a lot of noise. The frequency measured is in kHz

4. Recall that the procedure has defined baseband sample rate, samples per frame, frequency
deviation, de-emphasis filter, and audio sample rate. These were extracted from an example
provided by MathWorks. Explain why each of these settings ought to work.

These settings must work because the sample rate is above the Nyquist. All the values line up
and are consistent from block to block. The frequency sampled has a rate that can obtain voice.
The audio sample rate is the same as how CDs and recording devices are sampled, at 44.1KHz.

Conclusion:

It is important to understand how antennas are important to software that is receiving radio. The
proper hardware is necessary to interpret signals. In a software focused world, troubleshooting
software and hardware together is needed to get to the root of most issues.



16
ELECTRICAL ENGINEERING DEPARTMENT

California Polytechnic State University
San Luis Obispo

EE 504 Experiment #3

Digital Modulation and Noise
Objective Learn how to interact with modulation and counteract noise

Equipment: MATLAB, Pluto Radio, USB cable, SMA Antenna

Results:

.LJ u
[T —— Constelation Disgram?

Figure 3-1: Simulink QAM schematic



=
L
2
i—§.
-
3
&
L
a

MEASUREMENTS

Figure 3-2: Constellation Diagram of QAM modulation

17



MEASUREMENTS

Figure 3-3: Constellation diagram of QPSK modulation

18



19

MEASUREMENTS

s
=
a
=
<L
e
1]
|
;v |
w
o

0
In-phaze Ampiflude

Figure 3-4: Constellation diagram of PAM modulation

The cluster spread represents the noise in the measurement. The QPSK modulation has more
noise in the system as the spread is hard to read. From figure 3-5, QPSK has the highest error
rate which puts the consistency of the signal into question. The PAM modulation has linear
clusters.



Bit Error Rate

457+

35

[ ]

N
tn

8]

15

057

4-PAM 4-0AM
Modulation Scheme

QPSK

Figure 3-5 Plot histogram of bit error rate

20



21

1]
In-phase Amplitude

Figure 3-6 QPSK put through SRRC.. the clusters do not interfere with each other from the
previous QPSK figure.



22

@
.-
=
&
-
o
8
|
:

Figure 3-7 QAM timing using plutoLoopback16QAM.m



[
h")
2
4
H
- |
B
o
3

In-phase Ampiitude

Figure 3-8 QAM modulation using plutoLoopback16QAM.m live signal.

The low signal spread demonstrates low noise. The end of the transmission in 3-8 shows low
signal integrity.

23



Figure 3-9 VPSK, Var = 0.1

24



B
2
—
E
<
-
B
o
L]
d

'Figure 3-10 QPSK Var = 0,1

25




<1
2
&
E
=L
-
B
=
o

Error Rate
BPSK 4.7e-6
APSK 0.001585

47
1.6e4

Figure 3-11 BPSK Var = 0.1

1e7
1e7

26



4\ Constellation Diagram1
MEASUREMENTS

T T

8
2
£
E
<
4
-
]
.1
a

Figure 3-12 BPSK Var = 0.01

27



S
.
<
E
<X
3
|
E
d

Fig 3-12 QPSK Var = 0.01

28



=
2
=
=
=<
g
35
B
o
"
d

Error Rate
BPSK 1e7
QPSK 1e7

Figure 3-13 BPSK Variance = 0.01

29



30

Figure 3-14 BPSK Var = 1



Fig 3-15 Var = 1 QPSK

31



8
.
=4
E
<
-
-
-
=
o

Fig 3-16 Var =1 BPSK

32



33

apnjjduwy aunjeIpenD

=10 BPSK

3-17 Var



@
")
=
-4
E
<
-
B
o
=
d

Fig 3-18 QPSK Var =10

34




35

™
[=]

=]

L]
=

epnyjjduwy aunjeipeny

Fig 3-19 BPSK Var =10



36

]
o
E
o

E
<L

=

F
b

"
.

Fig 3-20 QPSK Var =10
Error Rate: BPSK 0.33
QPSK =0.61

Questions:

What is a reference constellation?

- Areference constellation is a way to demonstrate the quality of the sigal in
communications.QAM changes the amplitude and phase while PAM changes the
amplitude and PSK changes phase.



What happens in the constellation as the variance increases.

- The variation makes the diagram spread leading to more noise and a distorted signal.

What happens to the error rate as the variance increases?
- Higher noise and an increased error rate

When the number of symbols, the distance between adjacent symbols becomes less. What
implication does this have on the noise susceptibility and error rate?

- Less symbols means more means for noise to interfere with the signal. The error rate
goes up and lets neighboring points interfere with each other.

What would be a similar quantitative measure to BER for analog signals.

37

- Noise figure NF and SNR are similar to BER as they can measure the signal noise and

integrity.



38
ELECTRICAL ENGINEERING DEPARTMENT

California Polytechnic State University
San Luis Obispo

EE 504 Experiment #4

Transmit and Receive
Objective Learn how to operate and understand the Raspberry Pl 5.

Equipment: Raspberry Pl 5, Mouse, Keyboard

Password: sdr

Username: sdr

Results:

ﬁ Oracle VM VirtualBox Manager — 0 b
File Machine Help

New  Settings Discard Show

| General Previ
@- otter dev machine_1 = nera review
, () Powered off Name: Dragon0S_FocalX_R35

Operating System: Ubuntu (64-bit)

I B System

Base Memory: 6470 MB

Processors: 4

Boot Order: Floppy, Optical, Hard Disk

Acceleration:  VT-x%/AMD-V, Nested Paging, PAE/
X, KVM Paravirtualization

Ml Dpisplay

Video Memary: 55 MB
Graphics Controller: VYMSVGA
Remote Desktop Server: Disabled
Recording: Disabled
[;J Storage

Controller: IDE
IDE Primary Device 0: DragonQS_Focal¥_R35.vdi (Normal, 10.82 GB)

Figure 4-1: Download the dragon OS and upload to the Oracle VirtualBox



Ensure to allocate at least 4 cores, 10+GB of storage and as much memory

as your laptop comfortably allows.

Open the terminal and extract the MAC address

carrier 8 collisions o

LTICAST> mpy 1588

broadcase 19, 156.23. 255

" 84 scopeig g
(Etherner) 9 Ox26<11nks
Gigy

Figure 3-2 Extract the MAC address.

39



Flash Dragon OS to the raspberry pi SD card.

New Dragon Default Username = ubuntu

Default Password = dragon

ELECTRICAL ENGINEERING DEPARTMENT

California Polytechnic State University
San Luis Obispo

EE 504

Experiment #5

Multiplexing and Orthogonal Frequency
Objective
Equipment: Pluto SDR, MATLAB, limeSDR

40



Results:

Exploration:

Transmitted Image

Figure 5-1

Received Image

Figure 5-2

41



42

Received Baseband WLAN Signal Spectrum

i)
I
=
m
=
=
m
c
&
-
[
o
o
o
n
g
o
0o

Stopped VEW = 518.082 Hz RBW = 29.2969 kHz Sample Rate = 30.0000 MHz Updates =278 T = 0.00950397
Figure 5-3

Equalized WLAN Symbols

Quadrature Amplitude

& &
» 9
¢ n
e @
& o
2 ®
® @
Lo

¢ ¢ & & ¢ ¥ & ©

¢ v 2 ¢ o u § O

]
In-phase Amplitude

Figure 5-4



Transmitted Image

Figure 5-5 Using the kit antenna

Received Image

Figure 5-6 Using the kit antenna

43



44

Power spedral density (dBm/Hz)

Stopped

Quadrature Amplitude

VEW = 491.724 Hz REW = 20.2969 kHz Sample Rate = 30.0000 MHz Frames =1 T = 0.00950397

Figure 5-7 Using the kit antenna

E qualized WLAN Symbo
$ % & ¢ & & 2
$ % ¢ 4 ® &6 4 -
& «a ¢ & 4 o n a
" & & ¢ 2 » % w®n
q.vt.rQQ_
> v & & ¥ & % &
v ¥ o 2 4 v B
;-ﬂl:ltli_

Figure 5-8 Using the kit antenna



45

Received Baseband WLAN Signal Spectrum

w
L
E
m
B
=
™
s
]
o
E
o
@
o
®
g
]
(i

Stopped VBW =518.082 Hz RBW = 29.2069 kHz Sample Rate = 30.0000 MHz Updates = 278 T = 0.00950397

Figure 5-9 Using the kit antenna

- | (Ben Duval) took another kit antenna capture because | didn't really like the inverted
color | went with when | originally ran this simulation back home. Doing it in my
apartment, | seem to have gotten a lot more interference as | had to simulate it multiple
times for it to give me a fairly accurate result.

- Jacqueline would like to add the wire antenna created during lab 2 at some point to
improve results.



Simulink:

o
=
3
E
o
=
<
e
3
ju
o
~
3
a

Equalized WLAN Symbols
-

Intager

46




Stopped

47

Figure 5-11

i e
W

0
Frequency (kHz)

VBW = 34.5388 mHz RBW = 1.95313 Hz Sample Rate = 2.00000 kHz Updates =19 T = 10.0000

Figure 5-12

Variance = .01, Sample error rate = 0, error rate = 0, number of samples = 10000



48

0
Frequency (kHz)

Stopped VBW = 34.5388 mHz RBW = 1.95313 Hz Sample Rate = 2.00000 kHz Updates =19 T = 10.0000

Figure 5-13

Variance = .1, Sample error rate = .05188, error rate = 519, number of samples = 10000

Conclusion:

It is important to understand how multiplexing and OFDM work. The implementation and
application of what demodulation and modulation mean. FFT and IFFT are forms of
demodulation and modulation. Also, exploring how to differentiate the start and end of the
signals are important.

Questions:

Which part of the Simulink model represents the OFDM modulator? The demodulator?

- The OFDM modulator part of the Simulink model would consist of the following blocks:
BPSK modulator, Multiport Selector, Vector concatenation, and the IFFT.

- The demodulator part of the SImulink model would consist of the FFT, Multiport selector,
and the BPSK demodulator block.

Why did we inject zeros between the data streams?

- The zeros are injected between the data streams to help ensure there is no interference
of data. They act like the guard band between symbols.



- Similar to the barker codes, the program knows when the signal starts and ends.
Describe the steps for designing a WLAN transmitter and for designing a WLAN receiver.

- Transmitter: Modulation, encoding, hardware transmission
- Recliever: hardware reception, there needs to be an analog to digital converter, signal
processing for recovery, demodulation(FFT)/decoding

49



50

ELECTRICAL ENGINEERING DEPARTMENT
California Polytechnic State University
San Luis Obispo

EE 504 Experiment #6

GNU Radio Blocks and Flowgraphs

GNU Radio Block Basics

Low Pass Filter

Options Variable view flow graph errors
Title: EES04 Demo 1 ID: samp_rate
Author: roct Value: 32k

‘Dutput Language: Python
Generate Options: QT GUI

Low Pass Filter
Decimation: 1
Gain: 1 QT GUI Frequency Sink
Sample Rate: 32k Throttle FFT Size: 1024
Cutoff Freq: 10k Sample Rate: 32k Center Frequency (Hz): 0

Transition Width: 2k Bandwidth (Hz): 32k

Noise Source
Noise Type: Uniform
Amplitude: 1

Seed: 0

Window: Hamming
Beta: 6.76

Figure 1: Low pass filter created in the GNU lab



Relative Gain (dB)

&
&
|

-80

-100

-120

EE504 Demo 1

140 -

-15.00 -10.00 -5.00 000 5.00 10.00 15.00

Frequency (kHz)

Figure 2: LPF results using VMbox in GNU

51



Relative Gain (dB)

=
o
=

o
=)

-120

-140

-15.00 -10.00 -5.00 0.00

5.00

10.00 15.00

Frequency (kHz)

Low pass filter with FFT

Options
Title: EE504 Demo 1
Author: root

Output Language: Python
Generate Options: QT GUI

Variable
ID: samp_rate
Value: 32k

Noise Source
MNoise Type: Uniform
Amplitude: 1

Seed: 0

Figure 3: FFT Low pass filter results

Figure 4:

Low Pass Filter
Decimation: 1
Gain: 1
Sample Rate: 32k
Cutoff Freq: 10k
Transition Width: 2k
Window: Hamming
Beta: 6.76

Throttle
Sample Rate: 32k

FFT Low Pass Filter
Decimation: 1

Gain: 1

Sample Rate: 32k
Cutoff Freq: 10k
Transition Width: 2k
Window: Hamming
Beta: 6.76

Num. Threads: 1

Throttle
Sample Rate: 32k

FFT low pass added branch

Pa
latio

e R
Fre

Lion

QT GUI Frequency Sink

FFT Size: 1024

Center Frequency (Hz): 0

Bandwidth (Hz): 32k

QT GUI Frequency Sink

Name: FFT

FFT Size: 1024

Center Frequency (Hz): 0
Bandwidth (Hz): 32k

52



Low pass filter with added sliders

Noise Source
Noise Type: Uniform

5 out}

Amplitude: 1
Seed: 0

Options Variable
Title: EES04 Demo 1 ID: samp_rate
Author: root Value: 32k
Output L Python
Generate Options: QT GUI

Signal Source
Sample Rate: 32k
Waveform: Cosine
E Frequency: 1k
Amplitude: 1
Offset: 0

Initial Phase (Radians): 0

Low-pass Filter Taps
1D: my_taps
‘Gain: 1
Sample Rate (Hz): 32k
‘Cutoff Freq (Hz): 10k
Transition Width (Hz): 2k
Window: Hamming
Beta: 6.76

QT GUI Range
1D: freq

Default Value: 1k
Start: 0

Stop: 30k

Step: 1k

QT GUI Range
1D: center_freg
Default Value: 0
Start: 0

Stop: 30k

Step: 1k

53

Decimation: 1

Taps: my_taps

Sample Rate: 32k
Num. Threads: 1

Frequency Xlating FFT Filter

Center Frequency: 0

Frequency Xlating FIR Filter

Decimation: 1

Taps: my_taps
Center Frequency: 0
Sample Rate: 32k

Figure 5: Adding sliders using the FFT and FIR filters

Throttle
Sample Rate: 32k

Throttle
Sample Rate: 32k

QT GUI Range
1D: cutoff
Default Value: 10k
Start: 0
Stop: 30k
Step: 1k

QT GUI Frequency Sink
Mame: Standard Lowpass Bloc
FFT Size: 1024
Center Frequency (Hz): 0
Bandwidth (Hz): 32k

Freq' =) 1000 O
‘center_freq' () 0 -
Standard Lowpass Block

j m Data 0

Q m Data 1
204
a0 -
& 1
SE
- J
‘® 60
o 1

@
= 7
E 4
w80
[ 4
-100
-120
-140 -
T T T T T T T
-15.00 -10.00 -5.00 0.00 5.00 10.00 15.00
Frequency (kHz)
‘cutoff' — 8000

Figure 6: Center frequency is 0, sliders included, data O blue represents the FFT and data 1 red

represents the FIR

filter.



54

~

'freq’ T ] T T T : 7000 o

'center_freq' s " — —r 11000 O

Standard Lowpass Block

H Data 0

] L
] Data 1

Relative Gain (dB)
1

-100

-150

-200

r T T T T T T
-5.00 0.00 5.00 15.00 20.00 25.00

10.00
Frequency (kHz)

"cutoff'

~
| 1 1 1 1 1 1 1 1 1 T 13000

Figure 7: Center frequency is 7000, sliders included, data O blue represents the FFT and data 1
red represents the FIR filter.

Questions

1. If the FIR and FFT filter function almost identically, what is the point of having both? (Think
about hardware/computing cost?)

FIR filters have linear phase and use less computing compared to FFT filters.

2. Is it easier to use the general block and modify the taps parameters or use the
wrapper blocks (the first filters we used)?

It is easier to use general blocks and modify the taps to because the variables can be used and
the blocks can easily be reintegrated.



Writing your own block

Embedded Python Blocks:

Each time this file is saved, GRC will instantiate the first class it finds
to get ports and parameters of your block. The arguments to _ init  will
be the parameters. All of them are required to have default values!

import numpy as np
from gnuradio import gr

class blk(gr.sync block): # other base classes are basic block, decim block, interp block
"""Embedded Python Block example - a simple multiply const"""

def _ init_ (self, Port_sel=0): # only default arguments here
"""arguments to this function show up as parameters in GRC"""
gr.sync_block. init_ (
self,
name='Custom Mux', # will show up in GRC
in sig=[np.float32, np.float32, np.float32],
out_sig=[np.float32]
)

# if an attribute with the same name as a parameter is found,
# a callback is registered (properties work, too).
self.Port_sel = Port_sel

def work(self, input_items, output_items):
""vexample: multiply with constant"""
output_items[0][:] = input_items[self.Port sel]
return len(output items[0])

55



E Frequency 1k

E Frequencyr 1k

Waveform Selector: ‘ Cosine

I

Amplitude

Signal Source
Sample Rate: 32k
Waveform: Cozine
E Frequencys 1k
Amplitudes 1
Offset: 0

Initial Phase (Radiansh

Signal Source
Sample Rate: 32k
Waveform: Square

Amplitude: 1
Offset: 0
Initial Phase (Radians): o

Signal Source
Sample Rate: 32k
Waveformi Ssw Tooth

Amplitude: 1
Offset: 0
Initial Phase (Radians): 0]

~ ‘

QT GUI Chooser
1D Port_Sel
Label Wavaform Selector
Num Options: 3
Default optiom: 0
Option 01 0
Label 01 Cosine
Option 111
Label 11 Square
Option 212
Label 21 Sawtooth

Custom Mux Throttle
Port_Seli 0 Sample Rate: 32k

Figure 8: Custom mux flowchart

QT GUI Time Sink
Number of Points: 1.024k
Sample Rate: 32k
Autoscaler No

AL R ARTSATARAY

15
Time (ms)

Figure 9: Cosine wave

=

56



Waveform Selector: | Square v

57

T

0.5

-0.5

F m Signal 1

Amplitude
1
—
C
(
C
—
O
(
—
C
(-
—

C
(
C—
—
—
-
—
C
(
—
(
—
C—
—
C
(
[
I
-

T T T T
0 5 10 15 20 25

30
Time (ms)

Figure 9: Square wave

Waveform Selector: | Sawtooth v

1

0.5

Amplitude
o
1

-0.5

= Signal 1

15 20 25 30
Time (ms)

Figure 10: Sawtooth wave

Automating the waveform switching process



Options
Titler Not titled yet
Output Language: Fython
Generate Options: QT GUI

Variable

1D1 samp_rate

Value: 128k

Variable
1D variable_0

Value: 128k

Variable
IDs switch_times
Value:r 500m, 1, 15,2, 25

Signal Source
Sample Rate: 128k
Waveform: Cozine
@ Frequencyr 1k
Amplitude: 1
Offseti 0

Initial Phase (Radians) 0

Signal Source
Sample Rate: 128k
Waveform: Square
m Frequency: 1k
Amplitude: 1
Offset: 0

Initisl Phase (Radians)i 0

Signal Source
Sample Rate: 128k
Waveform: Saw Tooth
m Frequency: 1k
Amplitude: 1
Offset: 0

Initial Phase (Radians) 0

MUX Control Code

nmmon

Embedded Python Blocks:

QT GUI Chooser
ID: Port_Sel
Labeli Waveform Selector
Num Options: 2
Default option: 0
Option 01 0
Label 0: Cozine
Option It 1
Label 11 Square
Option 21 2
Label 21 Sawtooth

Sample_Rate: 128k
Switch_Time: 1

-
nputSel= * =

Throttle
Sample Rate: 128k

.

58

QT GUI Time Sink
Number of Points: 1.024k
Sample Rater 128k
Autoscaler No

M Deahb

PDU Vectors: On

botedd

Each time this file is saved, GRC will instantiate the first class it finds

to get ports and parameters of your block. The arguments to __ init

will

be the parameters. All of them are required to have default values!

wuan

import numpy as np

from gnuradio import gr

import pmt

class control block(gr.sync block):
def _ init__ (self, sample rate=1.0, switch_time=2.0):
gr.sync_block. init (

self,

name='Mux Control',

in_sig=[np.float32],
out_sig=[np.float32]

self.sample rate = sample_ rate

self.switch_time

self.numSamples

self.counter = 0

switch_time
int (self.sample_rate * self.switch_time)



59

self.selected port = 0
self.portName = "InputSel"
self .message port register out(pmt.intern(self.portName))

def work(self, input_ items, output_items):
nitems = len(input_items[O0])
self.counter += nitems
if self.counter >= self.numSamples:
self.selected port = (self.selected port + 1) % 3
self.counter = 0
msg = pmt.from long(self.selected port)
self .message port pub(pmt.intern(self.portName), msq)

output_items[0][:] = input_items[0]
return len(output items[0])

Custom Mux Code

nwun

Embedded Python Blocks:

Each time this file is saved, GRC will instantiate the first class it finds
to get ports and parameters of your block. The arguments to __ init will
be the parameters. All of them are required to have default values!

mmoan

import numpy as np
from gnuradio import gr
import pmt

class blk(gr.sync _block): # other base classes are basic_block, decim block,
interp block

def _ init (self): # only default arguments here
"""arguments to this function show up as parameters in GRC"""
gr.sync_block. init (

self,

name='Custom Mux', # will show up in GRC

in sig=[np.float32, np.float32, np.float32],

out_sig=[np.float32]



60

self.Port_sel = 0

self.portName = "ControlMsg"

self.message port register in(pmt.intern(self.portName))
self.set msg handler (pmt.intern(self.portName), self.handle msgqg)
def handle msg(self, msg):

self.Port_sel = pmt.to_long(msgq)

def work(self, input_ items, output items):

output_items[0][:] = input_items[self.Port_sel]
return len(output items[0])

Questions

1. What are the benefits and disadvantages of asynchronous information in flowgraphs?

The benefits are fewer interruptions and setup. More flexible handling of data and timing. Async
requires less CPU and memory usage as blocks can process data at a set pace. The
disadvantages are that it adds debugging issues as the system can be more complex. Data may
not be processed immediately which increases latency.

2. What other advantages might the message debugger have if you spend the time to write
debug messages?

The advantages may be to identify where the problem occurs by programming the blocks to
write debug messages.

Demo Video

https://youtu.be/gH0alrHc5vo

Streams and Tagging Streams


https://youtu.be/gH0glrHc5vo

Variable
1D: samp rate
Value: 128

Variable
101 variatie 0
Value: 128«

Variable
1D: switch times
Value: 500m, 1, 15.2.25

Initial Phase (Radians): 0

QT GUI Chooser
1D: Port_Sel

61

14
4 .23[75 ms, 0.7445
1 GoodbyerHello
0.5
3 ]
2
3 %7
E 4
< |
0.5
4
T T T T T T T
0 1 2 3 4 6
Time (ms)
14
0.5 -
1 Goodbye: Hello
04 W
1 5.9416 ms, -0.1990
0.5 |
-
r T T T T T
0 2 3 6

4
Time (ms)

= Signal 1

m Signal 1




62

= Signal 1

0.5

Amplitude
o
1

4 FiA) 4 Tk 4 FAA) 4 P\
Near Zero:-0.09801Réar Zero:-0.09801Réar Zero:-0.09801Réar Zero:3Q;83804RearZerg:-0.09801Mear Zero:-0.09801Rear Zero:-0.09801Méar Zero:-0.098

-0.5

T T T

4
Time (ms)

m Signal 1

Goodbye?Hello
0.5

Amplitude
o
1

4jear Zero: -1.391386€8 Zero: -1.39138M&#8 Zero: -1.391388€# Zero: -1.39138Md# Zero: -1.39138N€8 Zero: -1.39138Méd Zero: -1.39138M&# Zero: -1.39138e-C

-0.5 4

T T T T

4
Time (ms)

Questions

1. What is the main difference between tags and messages? What are the use cases for both?

Tags annotate spaces in data by providing metadata at a range or sample. Messages pass
information that does not fit into data streams. They are asynchronous unlike tags. Control
commands, notifications of events are the best use for messages.

2. Why are tags particularly useful for formatting PDUs/packets in flowgraphs?

Tags are useful because they have metadata, synchronize data streams marking the beginning
and end of PDUs, and error handling to find bad or corrupted parts of the data.



Hardware and Real Systems

SDRlab7.py

May 15 22:17

=

SDRlab7.grc- /home/sdr

Sample ',

Not titled yet

gain1 =

Waterfall Display | Time Domain Display

Constellation Display

a1 B G e e e

INFO] RX LPF configured
INFO] Selected RX path: LNAW
[INFO] Rx calibration finished

samp_rate 128000

-200 -150 -100 -50 0

Intensity Display: | Color et 1 L 1 L L L 1 ! ods

oo 25.50 KHz, 3.76€+01 s

% 2.00e+01

@

E

i 0.00e+00

-2.00e+01
T T T T T T T T T T
-60.00 -40.00 -20.00 0.00 20.00 40.00 60.00
Frequency (kHz)
-200 -150 -100 -50 0
Auto Scale [ 0 L 0 . L . 0 | -200dB
Display RF Frequencies FFT Size: | 1024 =
Window: | Hamming M

[INFO] Make connection: 'LimeSDR Mini [USB 3.0]
[1DA15F40FEO9DE’ Imports
[INFO] Reference clock 40.00 MHz Variables
INFO] Device name: LimeSDR-Mini_v2
[INFO% Reference: 40 MHz - center_freq 99900000.0
INFO] LMS7002M register cache: Disabled gain 30

Simulation showing noise reception

0000c0

63

E 00
- = x
@ soapyli (<]
Core
Soapy
sink
Soapy LimeSDR Sink
Source

Soapy LimeSDR Source|



Options
Title: Not titled yet ID‘:’::r::Ir:[e
Output Language: Python Value: 576k
‘Generate Options: 0T GUI
Variable
ID: center freq
Value: 93.3M

Soapy LimeSDR Source
Device arguments: 10... FE0SDE

Eemma] Sample Rate: 576k

Center Freq (Hz): 93.31

QT GUI Range

1D: gain

Label: gainl

Default Value: 30
Start: 0
Stop: 40
Step: 1

QT GUI Range QT GUI Range

1D: deci 1D: vol

Label: deci Label: vol

Default Value: 45k | | Default Value: 500m
start: 0 start: 0

Stop: 1M Stop: 1

Step: 1 Step: 10m

Flowchart for FM receiver/Demodulator

QT GUI Sink

Name:
FFT Size: 1024
Center Frequency (Hz): 93.3M
Bandwidth (Hz): 576k

Update Rate: 10

Low Pass Filter
Decimation: 4
Gain: 1

Sample Rate: 576k
Cutoff Freq: 100k
Transition Width: 10k
Window: Blackman
Beta: 6.76

WBFM Receive
Quadrature Rate: 143k
Audio Decimation: 3

Jout}

Audio Stop: 16k
Gain: 1
Tau: 75u

Multiply Const
Constant: 500m

64

Audio Sink
Sample Rate: 48 kHz
QT GUI Time Sink
Number of Points: 1.024k

Sample Rate: 576k
Autoscale: Yes

Question: What does the center frequency of the LineSDR block do: The center frequency
changes the center of the frequency you are visually analyzing on the graph. The complex
waveform output by the SDR is centered at the frequency of the baseband signal.

Activities SDRlabT.py

May 15 23:04 03

Not titled yet

ol = e

0.5000 =

gain1

O ‘(\»v‘] @ n

Amplitude
°
1

9 -‘! 6 ms, -0.0748

m Signal 1

Waterfall Display | Time Domain Display =~ Constellation Display

-200
Intensity Display: | Color - L L

Time (ms)

2.00e+01 T
1.50e+01 ¥

1.00e+01

Time (s)

5.002+00

0.00e+00

T
-200.00

-200
Auto Scale [

-150 -100
|

0.00
Frequency (kHz)

T
20000

-50

Display RF Frequencies

Window: | Hamming -

deci T

-200dB

FFT Size: 1024 M



65

FM frequency 99.3MHz

Demo Video

https://youtu.be/bylsJyfengk

Conclusion

It is important to understand how to interface the LimeSDR with the Raspberry Pl using GNU
radio. Analyzing the noise of the system is important to see if the antennas are interfaced
properly. Building out the software to receive and transmit signals at a certain frequency, and
decimating are important factors to understand. Tags annotate spaces in data by providing
metadata at a range or sample. Messages pass information that does not fit into data streams.
They are asynchronous unlike tags. Control commands, notifications of events are the best use
for messages. The FM receiver and demodulator function properly after finding the proper
sample rate and center frequency.


https://youtu.be/byIsJyfengk

	EE 504                                                                                   ​Experiment #1 ​ ​ Transmit and Receive  
	Procedure:  
	Results: 
	Questions:  
	Conclusion:  

	EE 504                                                                                   ​Experiment #2  
	Results: 
	Questions:  
	Conclusion:  

	EE 504                                                                                   ​Experiment #3 
	Results: 
	Questions: 

	EE 504                                                                                   ​Experiment #4  
	Results:  

	EE 504                                                                                   ​Experiment #5  
	Results:  
	Exploration: 
	Simulink:  

	Conclusion: 
	Questions: 

	EE 504                                                                                   ​Experiment #6 ​ ​GNU Radio Blocks and Flowgraphs 
	GNU Radio Block Basics 
	Low Pass Filter 
	Low pass filter with FFT 
	Low pass filter with added sliders 
	Questions 

	Writing your own block 
	Automating the waveform switching process 
	MUX Control Code 
	Custom Mux Code 
	Questions  
	Demo Video 

	Streams and Tagging Streams 
	 
	Questions 
	Hardware and Real Systems 
	Demo Video 


